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Consider the following problem:

m a x
u(t),0≤t≤T

∫ T

0
α(t)F [u(t), x(t), t]dt + α(T )S[x(T )]

s.t. x(0) = x0 given,
ẋ(t) = m[u(t), x(t), t]

Where x is the state vector, and u the vector of control variables. S is the salvage or
scrap function, allowing the possibility of putting some value at the end of the
planning horizon T .
α(t) represents the discount factor, and it will be assumed to be of the form
e−

∫ t
0 ρ(s)ds .
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A brief parenthesis to deal with the discount factor.

g =
zt+1 − zt

zt
zt = z0(1 + g)t

g =

(
dz(t)

dt

)
z(t)

gdt =
1

z(t)dz(t)∫
gdt =

∫
1

z(t)dz(t)

c + tg = ln(z(t))
z0etg = z(t)

Discrete Continuous
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In this case, α(t) = e−
∫ t
0 ρ(s)ds allows for a non constant discount factor. If this

discount factor would be constant, then α(t) = e−ρt ... now let’s go back to the
central problem
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It is necessary now to chose a control trajectory u(t). The state vector x(t) is
determined by the law of motion ẋ(t) and the initial condition x(0) = x0.

The objective is to describe u(t) and x(t) that maximizes the objective function. The
strategy will be to treat this problem as a combination of a static maximization at
each point in time, and a system of ordinary differential equations.
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T h e M a x i m u m P r i n c i p l e

At each point t, the agent finds herself with some inherited value x(t) and has to
chose the control vector u(t) that will determine both the immediate payoff F and the
rate of change of the state variables x̂(t).

The current decision about u(t) has two effects: through F (·, t) (immediate), and
through ẋ(t) for the future.
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The idea is to introduce a modified objective function that will add to the immediate
return the value of the change in the state vector due to current decisions. To this
end, we introduce a new set of variables q(t), one for each component of the state
vector. These variables, known as multipliers or costate variables, can be interpreted
as the prices associated with the state variables. The modified objective function,
known as the current-value Hamiltonian.
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H a m i l t o n i a n

D e fi n i t i o n

The Hamiltonian is a modified objective function for the problem in (1), represented by:

Hc(t) = Hc(u(t), x(t), q(t), t) ≡
≡ F (u(t), x(t), t) + q(t)m(u(t), x(t), t) =
= F (·, t) + q(t)ẋ(t)

The first term, F (·, t) represents the current gains to the agent. The second term
q(t)ẋ(t) represents the increase in value due to the change in the state variables. The
Hamiltonian can be interpreted as the sum between the current gains plus the gains of
accrue from the “investment in the future” represented by the change in the state
variable.
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H a m i l t o n i a n

If Hc is differentiable, a necessary condition for an optimum is:

∂Hc

∂u(t) = 0 ⇒ ∂F (u(t), x(t), t)
∂u(t) + q(t)∂m(u(t), x(t), t)

∂u(t) = 0

This requires that the q(t) truly reflect the marginal contribution of the state variables
to the agent’s total payoff.
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H a m i l t o n i a n

A conclusion of that is that the evolution of the costate variables over timer is
described by the system:

−∂Hc(t)
∂x(t) = q̇(t)− ρ(t)q(t)
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H a m i l t o n i a n

Note that the derivative of the Hamiltonian with respect to x(t) is:

∂Hc(t)
∂x(t) =

∂F (u(t), x(t), t)
∂x(t) + q(t)∂m(u(t), x(t), t)

∂x(t)

∂F(u(t),x(t),t)
∂x(t) is the current marginal return of x(t)

q(t)∂m(u(t),x(t),t)
∂x(t) is the contribution to the increase of the stock of x(t) valued at

its shadow price q(t).
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H a m i l t o n i a n

Rearranging the system that describes the evolution of the costate variables we obtain:

∂Hc(t)
∂x(t) + q̇(t)

q(t) = ρ(t)

Think of x(t) as an asset,

∂Hc(t)
∂x(t) is like the dividend.

q̇(t) are like the capital gains (price change).
q(t) is the price.

So the left hand side is the instantaneous rate of return. Look closely, the condition
requires that the instantaneous rate of return equals the instantaneous discount rate!
So there are no possible gains of a change in holdings (other choice of x(·)).
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H a m i l t o n i a n

T h e o r e m ( P o n t r y a g i n ’ s M a x i m u m P r i n c i p l e )

Let u∗(t), with t ∈ [0,T ], be the time path of the control vector that solves the
problem (1). Then there exist continuous functions of time q(t) such that for each
t ∈ [0,T ],

1. the control maximizes the current-value Hamiltonian

u∗(t) = a r g m a x
u

{F (x(t), u, t) + q(t)m(x(t), u, t)}

2. the law of motion of the state vector holds,

ẋ(t) = m[u∗(t), x(t), t]

3. and the functions q(t) satisfy the differential equations

−∂Hc(t)
∂x(t) = q̇(t)− ρ(t)q(t)
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H a m i l t o n i a n

The appropriate terminal condition in this case is

q(T ) = DS(x(T ))

i.e. the price of the state variable must be equal to the marginal scrap function on the
state variable.
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H a m i l t o n i a n

If there is no scrap function, then there are further transversality conditions that are
necessary to identify the optimal path. When we have a finite problem (not very
common in economics, at least compared to the infinite horizon one) we would require
x(T ) ≥ 0 and q(T ) ≥ 0 and q(T )x(T ) = 0. Note what this means.

If we are leaving resources (x(T ) > 0) then they must have no value (q(T ) = 0).
If we they are valuable (q(T ) > 0) then we need to use it all (x(T ) = 0).
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H a m i l t o n i a n

T h e o r e m ( M a x . p r i n c i p l e a n d t r a n s v . c o n d i t i o n (T < ∞) )

Let u∗(t), with t ∈ [0,T ], be the time path of the control vector that solves the
problem (1). Then there exist costate variables q(T ) continuous functions of time,
such that for each t ∈ [0,T ],

1. the control maximizes the current-value Hamiltonian

u∗(t) = a r g m a x
u

{F (x(t), u, t) + q(t)m(x(t), u, t)}

2. the law of motion of the state vector holds,

ẋ(t) = m[u∗(t), x(t), t]

3. and the functions q(t) satisfy the differential equations

−∂Hc(t)
∂x(t) = q̇(t)− ρ(t)q(t)
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H a m i l t o n i a n

5. and the transversality conditions

q(T ) ≥ 0 and q(T )x(T ) = 0

An important point is that these theorems are of “existence,” and further, they are
necessary conditions, not sufficient (somehow like the first order condition on static
optimization is not sufficient).
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H a m i l t o n i a n

T h e o r e m

Assume the maximized Hamiltonian,

H̃(x(t), q(t), t) = m a x
u

{F (x(t), u, t) + q(t)m(x(t), u, t)}

is a concave function of x for given q and t. Then any policy satisfying the necessary
conditions specified in the Theorem “Max. principle and transv. condition (T < ∞)”
is optimal for the finite-horizon problem with terminal constraint x(T ) ≥ 0.
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H a m i l t o n i a n

What about the infinite horizon?

This is the most frequent case modeled in economics, but it brings some problems (as
we saw in yesterday’s example)...

1. The objective function might not converge...{
l i m T → ∞

∫ T
0 α(t)F [u(t), x(t), t]dt

}
→?

2. We cannot ensure the existence of a sequence even if the objective function
converges...

So what now?
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On the good side, if a solution exists, then the conditions we had from the previous
theorems are still valid, but we need to update our transversality conditions.

l i m
t→∞

α(t)q(t) ≥ 0

l i m
t→∞

α(t)q(t)x(t) = 0
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T h e o r e m ( M a x . p r i n c i p l e a n d s u ff . c o n d i t i o n s (T → ∞) )

Let u∗(t), t ∈ [0,∞), be the time path of the control vectors that solves the problem

m a x
u(t),0≤t≤∞

∫ ∞

0
α(t)F [u(t), x(t), t]dt

s.t. x(0) = x0
ẋ(t) = m[u(t), x(t), t]

Where α(t) = e−
∫ t
0 ρ(s)ds . Then there exist continuous functions of time, q(t) such

that for each t
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t h e o r e m c o n t i n u a t i o n

1. the control maximizes the current-value Hamiltonian,
u∗(t) = a r g m a x u Hc [u, x(t), q(t), t]

2. the law of motion of the state vector holds, ẋ(t) = m[u∗(t), x(t), t], and,
3. the functions q(t) satisfy the differential equations −∂Hc

∂x(t) = q̇(t)− ρ(t)q(t)
Moreover, if the maximized Hamiltonian is a concave function of x(t) for given q(t)
and t, then any policy function satisfying the Potryagin conditions and the
transversality conditions at infinity

l i m
t→∞

α(t)q(t) ≥ 0 and l i m
t→∞

α(t)q(t)x(t) = 0

is optimal.
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T h e o r e m

Let x∗(t), u∗(t), and q∗(t) be a path satisfying the necessary conditions for a
stationary, infinite-horizon control problem, as given in the previous theorem, with
α(t) = e−ρt , ρ > 0. Suppose further than the concavity assumption of the sufficiency
part of the theorem holds. Then, if x∗(t) and q∗(t) converge to a steady state
(x s , qs), with x s , qs ≥ 0, they constitute an optimal path.
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